992 research outputs found

    Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale

    Get PDF
    In order to estimate the air-surface mercury exchange of grasslands in temperate climate regions, fluxes of gaseous elemental mercury (GEM) were measured at two sites in Switzerland and one in Austria during summer 2006. Two classic micrometeorological methods (aerodynamic and modified Bowen ratio) have been applied to estimate net GEM exchange rates and to determine the response of the GEM flux to changes in environmental conditions (e. g. heavy rain, summer ozone) on an ecosystem-scale. Both methods proved to be appropriate to estimate fluxes on time scales of a few hours and longer. Average dry deposition rates up to 4.3 ng m(-2) h(-1) and mean deposition velocities up to 0.10 cm s(-1) were measured, which indicates that during the active vegetation period temperate grasslands are a small net sink for atmospheric mercury. With increasing ozone concentrations depletion of GEM was observed, but could not be quantified from the flux signal. Night-time deposition fluxes of GEM were measured and seem to be the result of mercury co-deposition with condensing water. Effects of grass cuts could also be observed, but were of minor magnitude

    Leaf area controls on energy partitioning of a mountain grassland

    No full text
    International audienceUsing a six year data set of eddy covariance flux measurements of sensible and latent heat, soil heat flux, net radiation, above-ground phytomass and meteorological driving forces energy partitioning was investigated at a temperate mountain grassland managed as a hay meadow in the Stubai Valley (Austria). The main findings of the study were: i) Energy partitioning was dominated by latent heat, followed by sensible heat and the soil heat flux; ii) When compared to standard environmental forcings, the amount of green plant matter, which due to three cuts varied considerably during the vegetation period, explained similar, and partially larger, fractions of the variability in energy partitioning; ii) There were little, if any, indications of water stress effects on energy partitioning, despite reductions in soil water availability in combination with high evaporative demand, e.g. during the summer drought of 2003

    Leaf area controls on energy partitioning of a temperate mountain grassland

    Get PDF
    Using a six year data set of eddy covariance flux measurements of sensible and latent heat, soil heat flux, net radiation, above-ground phytomass and meteorological driving forces energy partitioning was investigated at a temperate mountain grassland managed as a hay meadow in the Stubai Valley (Austria). The main findings of the study were: (i) Energy partitioning was dominated by latent heat, followed by sensible heat and the soil heat flux; (ii) When compared to standard environmental forcings, the amount of green plant matter, which due to three cuts varied considerably during the vegetation period, explained similar, and partially larger, fractions of the variability in energy partitioning; (iii) There were little, if any, indications of water stress effects on energy partitioning, despite reductions in soil water availability in combination with high evaporative demand, e.g. during the summer drought of 2003

    Estimating carbon dioxide fluxes from temperate mountain grasslands using broad-band vegetation indices

    Get PDF
    The broad-band normalised difference vegetation index (NDVI) and the simple ratio (SR) were calculated from measurements of reflectance of photosynthetically active and short-wave radiation at two temperate mountain grasslands in Austria and related to the net ecosystem CO<sub>2</sub> exchange (NEE) measured concurrently by means of the eddy covariance method. There was no significant statistical difference between the relationships of midday mean NEE with narrow- and broad-band NDVI and SR, measured during and calculated for that same time window, respectively. The skill of broad-band NDVI and SR in predicting CO<sub>2</sub> fluxes was higher for metrics dominated by gross photosynthesis and lowest for ecosystem respiration, with NEE in between. A method based on a simple light response model whose parameters were parameterised based on broad-band NDVI allowed to improve predictions of daily NEE and is suggested to hold promise for filling gaps in the NEE time series. Relationships of CO<sub>2</sub> flux metrics with broad-band NDVI and SR however generally differed between the two studied grassland sites indicting an influence of additional factors not yet accounted for

    Dielectric Susceptibility and Heat Capacity of Ultra-Cold Glasses in Magnetic Field

    Full text link
    Recent experiments demonstrated unexpected, even intriguing properties of certain glassy materials in magnetic field at low temperatures. We have studied the magnetic field dependence of the static dielectric susceptibility and the heat capacity of glasses at low temperatures. We present a theory in which we consider the coupling of the tunnelling motion to nuclear quadrupoles in order to evaluate the static dielectric susceptibility. In the limit of weak magnetic field we find the resonant part of the susceptibility increasing like B2B^2 while for the large magnetic field it behaves as 1/B. In the same manner we consider the coupling of the tunnelling motion to nuclear quadrupoles and angular momentum of tunnelling particles in order to find the heat capacity. Our results show the Schotky peak for the angular momentum part, and B2B^2 dependence for nuclear quadrupoles part of heat capacity, respectively. We discuss whether or not this approach can provide a suitable explanation for such magnetic properties.Comment: 10 pages, 1 figur

    Gap-filling strategies for annual VOC flux data sets

    Get PDF
    Up to now the limited knowledge about the exchange of volatile organic compounds (VOCs) between the biosphere and the atmosphere is one of the factors which hinders more accurate climate predictions. Complete long-term flux data sets of several VOCs to quantify the annual exchange and validate recent VOC models are basically not available. In combination with long-term VOC flux measurements the application of gap-filling routines is inevitable in order to replace missing data and make an important step towards a better understanding of the VOC ecosystem–atmosphere exchange on longer timescales. <br><br> We performed VOC flux measurements above a mountain meadow in Austria during two complete growing seasons (from snowmelt in spring to snow reestablishment in late autumn) and used this data set to test the performance of four different gap-filling routines, mean diurnal variation (MDV), mean gliding window (MGW), look-up tables (LUT) and linear interpolation (LIP), in terms of their ability to replace missing flux data in order to obtain reliable VOC sums. According to our findings the MDV routine was outstanding with regard to the minimization of the gap-filling error for both years and all quantified VOCs. The other gap-filling routines, which performed gap-filling on 24 h average values, introduced considerably larger uncertainties. The error which was introduced by the application of the different filling routines increased linearly with the number of data gaps. Although average VOC fluxes measured during the winter period (complete snow coverage) were close to zero, these were highly variable and the filling of the winter period resulted in considerably higher uncertainties compared to the application of gap-filling during the measurement period. <br><br> The annual patterns of the overall cumulative fluxes for the quantified VOCs showed a completely different behaviour in 2009, which was an exceptional year due to the occurrence of a severe hailstorm, compared to 2011. Methanol was the compound which, at 381.5 mg C m<sup>&minus;2</sup> and 449.9 mg C m<sup>&minus;2</sup>, contributed most to the cumulative VOC carbon emissions in 2009 and 2011, respectively. In contrast to methanol emissions, however, considerable amounts of monoterpenes (−327.3 mg C m<sup>&minus;2</sup>) were deposited onto the mountain meadow during 2009 caused by a hailstorm. Other quantified VOCs had considerably lower influences on the annual patterns

    Evidence for Magnetic Field Induced Changes of the Phase of Tunneling States: Spontaneous Echoes in (KBr)1−x_{1-x}(KCN)x_x in Magnetic Fields

    Full text link
    Recently, it has been discovered that in contrast to expectations the low-temperature dielectric properties of some multi-component glasses depend strongly on magnetic fields. In particular, the low-frequency dielectric susceptibility and the amplitude of coherent polarization echoes show striking non-monotonic magnetic field dependencies. The low-temperature dielectric response of these materials is governed by atomic tunneling systems. We now have investigated the coherent properties of tunneling states in a crystalline host in magnetic fields up to 230 mT. Two-pulse echo experiments have been performed on a KBr crystal containing about 7.5% CN−^-. Like in glasses, but perhaps even more surprising in the case of a crystalline system, we observe a very strong magnetic field dependence of the echo amplitude. Moreover, for the first time we have direct evidence that magnetic fields change the phase of coherent tunneling systems in a well-defined way. We present the data and discuss the possible origin of this intriguing effect.Comment: 4 pages, 3 figures, submitted to PR

    Replacement of soybean cake by Hermetia illucens meal in diets for layers

    Get PDF
    Insects will likely play an important role as protein sources for livestock in the future. Many insect species are able to convert materials not suitable for human nutrition – or even waste – into valuable protein with a favourable amino acid composition for poultry and other livestock. A feeding trial with partly de-fatted meal of dried Hermetia illucens larvae (Hermetia meal) reared on vegetarian by-products of the pasta and convenience food industry was carried out in small groups of Lohmann Selected Leghorn laying hens (four rounds, 10 hens/round). Experimental diets H12 and H24 contained 12 and 24 g/100 g Hermetia meal replacing 50 or 100% of soybean cake used in the control feed, respectively. After three weeks of feeding experimental diets, there were no significant differences between feeding groups with regard to performance (egg production, feed intake). There was a tendency (P=0.06) for lower albumen weight in the H24 group; yolk and shell weights did not differ. No mortality and no sign of health disorders occurred. Plumage as well as wound scores remained stable during the feeding period and did not differ between treatments. Dry matter of faeces increased with increasing proportions of Hermetia meal in the diet, with a significant difference between H24 and the control (P=0.03). An increase of black faecal pads was observed in the H12 and H24 groups. Overall, these results suggest Hermetia meal can be a valuable component of layer diets. However, insect meal production still has to become economically more viable through upscaling production and, especially, legislative issues have to be solved

    Magnetic Field Dependent Tunneling in Glasses

    Full text link
    We report on experiments giving evidence for quantum effects of electromagnetic flux in barium alumosilicate glass. In contrast to expectation, below 100 mK the dielectric response becomes sensitive to magnetic fields. The experimental findings include both, the complete lifting of the dielectric saturation by weak magnetic fields and oscillations of the dielectric response in the low temperature resonant regime. As origin of these effects we suggest that the magnetic induction field violates the time reversal invariance leading to a flux periodicity in the energy levels of tunneling systems. At low temperatures, this effect is strongly enhanced by the interaction between tunneling systems and thus becomes measurable.Comment: 4 pages, 4 figure
    • …
    corecore